Pi Sayısının Tarihi.
Erken Dönem Tarihçesi
Pi’nin tarihi, MÖ 2000 yılına kadar uzanır. Bu dönemlerde Babilliler ve Mısırlılar π’yi kullanmışlardır. Babilliler (yaklaşık MÖ 2000) pi’yi yaklaşık olarak 3,125 kullandılar; bu değer, bir daire içine yazılmış bir altıgenin çevresini hesaplayarak, dairenin çevresine oranının 24/25 olduğunu varsayarak elde ettikleri bir değerdi. Rhind Papirüsü (yaklaşık MÖ 1650) bize eski Mısırlıların 256/81 veya yaklaşık 3.16045 değerini kullandıklarını gösteriyor. Hem Babilliler hem de Mısırlılar pi değerine ilişkin kaba sayısal tahminlere sahipti ve daha sonra Antik Yunanistan’daki matematikçiler, özellikle Arşimet, pi’yi hesaplamak için algoritmik bir yaklaşım kullanan ilk kişi oldu. Arşimet, bir çemberin içine bir çokgen ve çemberin dışına ikinci bir çokgen çizdi. Sonra sürekli olarak çokgen ekleyerek çemberin şekline gittikçe yaklaştı. Böylece 96 kenarlı çokgenlere ulaşarak 223/71 pi 22/7 veya yaklaşık 3.1418 gibi ortalama bir değer elde etti. Arşimet ayrıca bir dairenin alanının, yarıçapının karesine oranının aynı sabit olduğunu ve bir dairenin alanının, tabanı bu dairenin çevresine ve yüksekliği ise yarıçapına eşit bir üçgenin alanına eşit olduğunu kanıtlamıştır. Benzer bir yaklaşım, Çinli matematikçi ve gök bilimci olan Zu Chongzhi (429-501) tarafından da kullanıldı. Bir çemberin çevresinin çapına oranının değerini 355/113 olarak hesapladı.
MS 5.yüzyılda geometrik teknikleri kullanarak Hintli matematikçiler π sayısında beş haneye yaklaşırken, Çinli matematikçiler yedi basamaklı bir yaklaşım yaptı. MS 265 civarında, Wei Hanedanı matematikçisi Liu Hui, poligon tabanlı yinelemeli bir algoritma yarattı ve bunu 3.072 kenarlı bir çokgenle kullanarak 3.1416 değerini elde etti. Liu daha sonra hesaplamanın daha hızlı bir yöntemini icat etti ve ardışık çokgenlerin alanlarındaki farklılıkların 4 faktörlü bir geometrik seri oluşturmasından yararlanarak 96 kenarlı bir çokgenle 3.14 değerini elde etti. Hintli gök bilimci Aryabhata, Āryabhaṭīya’sında (MS 499) 3,1416 değerini kullandı. Fibonacci 1220’de, Arşimet’ten bağımsız bir poligonal yöntem kullanarak 3.1418’i hesapladı.
Arşimet'in Kullandığı Yöntem.